
Introduction to Combinatorial Game Theory

Tom Plick

Drexel MCS Society
April 10, 2008

1/40



A combinatorial game is a two-player game with the following
properties:

I alternating play

I perfect information

I no element of chance

I guaranteed ending

A player left without a move loses the game.
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Impartial games

An impartial game is one in which both players have the same
moves available to them in a given position.

(Most board games are partisan — e.g. in chess, I can only move
my pieces, you can only move yours.)

So. . . a game is uniquely determined by the positions to which it
allows us to move.
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The game of Nim

There are several heaps of sticks. A move consists of selecting a
heap and removing one or more sticks from it. The winner is the
player who takes the last stick.

IIIII IIIII IIIII
IIII IIIII

(5) (9) (10)

Note that each move affects exactly one heap.
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Formally:
An impartial game G consists of a set of impartial games, called
the options of G . A move in G consists of selecting one of its
options.
(We will only consider finite games for now.)

Consider. . . a tree is a set of trees.

We use a tree as an way of representing the games abstractly. We
start at the root, and we play by moving from the root to one of
its children.
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Let’s build some games

I B0, the empty set:

I B1, the set containing the empty set:

I B2, the set containing these two:

I B3, the set containing these three:

These are Nim-heaps: from Bk , one can move to B0,B1, . . . ,Bk−1.
These trees correspond to Nim-heaps of size 0, 1, 2, 3.
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Who wins?

B0 B1 B2

Each of the games above is either a win or a loss:

G is a win iff some option of G is a loss.

G is a loss iff no option of G is a loss (or equivalently, iff every
option of G is a win).

You win by leaving your opponent a losing position.
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Addition. . .

We model addition after Nim:

In G & H, the player to move makes a move in either G or H, but
not both.

Thus G & H = {G & x}x∈H ∪ {y & H}y∈G .

A Nim game is the sum of its heaps.

B0 is an identity element:

B0 & B0 = B0,

and by induction:

G & B0 = {x & B0}x∈G = {x}x∈G = G for any G .

We will use 0 to denote B0.
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Who wins. . . ?

(We start at the root in each tree, and at each turn, we move in
one of the trees.)

I B1 & B1?

I B2 & B1?

In the top sum, the first player loses; in the bottom sum, the first
player wins!
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Congruence

B1 and B2 are both wins, but they behave differently when added
to B1.

To classify games beyond “win” or “loss,” we define congruence
between games.

Two impartial games G and H are congruent iff for all games x ,
G & x and H & x have the same outcome.

Note that G ∼= G for all G .
But G ∼= H does not imply G = H. e.g. for all x ,

& x ∼= & x .
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Properties of congruence

Congruence is reflexive, symmetric, and transitive.

Addition is commutative:

G & H = {G & x}x∈H ∪ {y & H}y∈G .

H & G = {x & G}x∈H ∪ {H & y}y∈G .

By induction, we assume that G & x = x & G and H & y = y & H.
Then the sets G & H and H & G are equal.

By a similar argument, addition is also associative.
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Addition preserves congruence

Theorem. Suppose G1
∼= G2. Then G1 & H ∼= G2 & H.

Proof. Given x , let y = H & x . Then

(G1 & H) & x ∼= G1 & (H & x) = G1 & y ,
(G2 & H) & x ∼= G2 & (H & x) = G2 & y .

Since G1 & y and G2 & y have the same outcome,
(G1 & H) & x and (G2 & H) & x have the same outcome.

Thus G1 & H ∼= G2 & H.

Corollary. If G1
∼= G2 and H1

∼= H2, then G1 & H1
∼= G2 & H2.
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Identity

Adding a loss L to G does not change the outcome of G :

Every option of L is a win.
G & L = {g & L}g∈G ∪ {G & `}`∈L.

If G is a win, some g is a loss, so g & L is a loss by induction, and
G & L is a win.
If G is a loss, then every g is a win, so that by induction, every
g & L and every G & ` is a win. Thus, G & L is a loss.

Every loss is an identity element.
So all losses are congruent, and we obtain that

G ∼= 0 iff G is a loss.
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Negation

The negative of a number x is the y such that x + y = 0.
Does an impartial game G have a negation?

Theorem. Every impartial game G is its own negation; viz.,
G & G ∼= 0.

Proof. If G is a loss, it is apparent that G & G is a loss. Let us
suppose then that G is a win.

Write G = {g1, g2, g3, . . . , gn}. By induction, we assume that the
theorem holds for g1, g2, g3, . . . , gn.
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G & G = {g1 & G , g2 & G , . . . , gn & G}
= {{g1 & g1, . . .}, {g2 & g2, . . .}, . . . , {gn & gn, . . .}}.

Each game of the form {gi & gi , . . .} contains a loss, and thus is a
win.

Consequently, each member of G & G is a win, which makes G & G
a loss.

Therefore G & G ∼= 0, q.e.d.
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Negation, again

Consider playing the game G & G . Suppose your opponent moves
in the left subgame. What move should you play now?

strategy-stealing
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Composition

We have seen that two congruent games behave the same in
addition. We prove now that they behave the same way
everywhere else, too:

Theorem. If G = {g1, g2, . . . , gn} and H = {h1, h2, . . . , hn}, with
g1
∼= h1, g2

∼= h2, . . . , gn
∼= hn, then G ∼= H. (Sets of congruent

games are congruent.)

17/40



Composition

We have seen that two congruent games behave the same in
addition. We prove now that they behave the same way
everywhere else, too:

Theorem. If G = {g1, g2, . . . , gn} and H = {h1, h2, . . . , hn}, with
g1
∼= h1, g2

∼= h2, . . . , gn
∼= hn, then G ∼= H. (Sets of congruent

games are congruent.)

17/40



Proof.

G & H = { g1 & H, g2 & H, . . . , gn & H,

G & h1,G & h2, . . . ,G & hn}
= { {g1 & h1, . . .}, {g2 & h2, . . .}, . . . , {gn & hn, . . .},

{g1 & h1, . . .}, {g2 & h2, . . .}, . . . , {gn & hn, . . .}}.

Each game of the form {gi & hi , . . .} contains a loss, and thus is a
win.

Consequently, each option of G & H is a win, which makes G & H
a loss.

Therefore G & H ∼= 0, and G ∼= H, q.e.d.
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Addition of Nim-heaps (Bouton, 1902)

Theorem. When c is a power of 2 and 0 ≤ d < c , it holds that
Bc & Bd

∼= Bc+d .

e.g. B8 & B3
∼= B11.

Combined with the fact that Bk & Bk
∼= 0, we can use this

theorem to add any two Nim-heaps:

e.g. B22 & B5
∼= B16 & B4 & B2 & B4 & B1

∼= B16 & B2 & B1
∼= B19.

Binary addition without carries: bitwise exclusive-OR

Bc & Bd = B(c xor d).
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Example. Suppose the theorem holds for all of B8 & B<3 and
B<8 & B3.

Note that {0 . . . 7} xor 3 is still {0 . . . 7}.

So

B8 & B3 = {B0 & B3,B1 & B3,B2 & B3, . . . ,B7 & B3}
∪{B8 & B0,B8 & B1,B8 & B2}

∼= {B0,B1, . . . ,B7} ∪ {B8,B9,B10}
∼= B11.

We can replace B8 with Bc for any c that is a power of 2, and
replace B3 with Bd for d < c .
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The Sprague-Grundy theorem (1930s)

Theorem. An impartial game G = {g1, g2, g3, . . . , gn} is
congruent to the smallest Nim-heap that is not congruent to any
member of G .

e.g. The game {B0,B1,B3} ∼= B2, since B0 and B1 are represented
in the members of G but B2 is not.

Proof. By induction, we assume that the theorem holds true for
g1, g2, . . . , gn.

Let k be the smallest integer ≥ 0 for which no element of G is
congruent to Bk . We know that G contains elements congruent to
each of B0,B1,B2, . . . ,Bk−1.
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G & Bk = { g1 & Bk , g2 & Bk , g3 & Bk , . . . , gn & Bk ;

G & B0,G & B1,G & B2, . . . ,G & Bk−1}.

G & B0 is a win since one of its options is ∼= B0 & B0.

G & B1 is a win since one of its options is ∼= B1 & B1, etc.

All the gi & Bk are wins, because none of the gi is congruent to
Bk . (Bi & Bj � 0 for i 6= j)

Every member of G & Bk is a win; thus, G & Bk is a loss and ∼= 0,
and we have G ∼= Bk .

A game congruent to Bk is said to have a Nim-value of k and is
denoted by ∗k.
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Putting it all together

For impartial games, we have shown

I that congruent games behave the same;

I how to add Nim-heaps; and

I that every game is congruent to some Nim-heap.

We now know how to deal with any impartial game.

Since congruent games are equivalent for our purposes, we will
write = in place of ∼= from now on.
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Evaluation

The S-G theorem gives us a way to evaluate an arbitrary impartial
game: just start at the lower levels of the tree and label each node
with its Nim-value, deriving the Nim-values of branch nodes from
their children.

We can prune any tree into a binomial tree with the same
Nim-value.
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How to win at Nim

Losing positions have a Nim-value of 0; winning positions have a
Nim-value > 0.
Remember that to win the game, we want to leave the opponent
with a losing position.

So, try every move, and choose the one that leaves a position with
Nim-value 0:

IIIII IIIII IIIII
IIII IIIII

(5) (9) (10)

Take 2 from the pile of 5. This move wins because
3 xor 9 xor 10 = 0.
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Limited Nim

Play is the same as in Nim, except that we only allow the player to
take 1, 2, or 3 sticks at a time.

IIIII IIIII IIIII
IIII IIIII

(5) (9) (10)

L0 = {} = ∗0 L4 = {L1, L2, L3} = {∗1, ∗2, ∗3} = ∗0
L1 = {L0} = {∗0} = ∗1 L5 = {L2, L3, L4} = {∗2, ∗3, ∗0} = ∗1
L2 = {L0, L1} = {∗0, ∗1} = ∗2 L6 = {L3, L4, L5} = {∗3, ∗0, ∗1} = ∗2
L3 = {L0, L1, L2} = {∗0, ∗1, ∗2} = ∗3 L7 = {L4, L5, L6} = {∗0, ∗1, ∗2} = ∗3

etc.

Lk = ∗(k mod 4).

26/40



Limited Nim

Play is the same as in Nim, except that we only allow the player to
take 1, 2, or 3 sticks at a time.

IIIII IIIII IIIII
IIII IIIII

(5) (9) (10)

L0 = {} = ∗0 L4 = {L1, L2, L3} = {∗1, ∗2, ∗3} = ∗0
L1 = {L0} = {∗0} = ∗1 L5 = {L2, L3, L4} = {∗2, ∗3, ∗0} = ∗1
L2 = {L0, L1} = {∗0, ∗1} = ∗2 L6 = {L3, L4, L5} = {∗3, ∗0, ∗1} = ∗2
L3 = {L0, L1, L2} = {∗0, ∗1, ∗2} = ∗3 L7 = {L4, L5, L6} = {∗0, ∗1, ∗2} = ∗3

etc.

Lk = ∗(k mod 4).

26/40



Kayles

Bowling pins are set up in a row, with some gaps between them:

Two bowlers compete to knock down the last pin. Each throws the
ball perfectly, and can, at will, knock down a pin of his choosing,
or knock down two adjacent pins.

The sum of two Kayles games is another Kayles game, and each
move affects only one of the clumps of pins. Therefore they
behave as Nim-heaps:

27/40



Kayles

Bowling pins are set up in a row, with some gaps between them:

Two bowlers compete to knock down the last pin. Each throws the
ball perfectly, and can, at will, knock down a pin of his choosing,
or knock down two adjacent pins.

The sum of two Kayles games is another Kayles game, and each
move affects only one of the clumps of pins. Therefore they
behave as Nim-heaps:

27/40



Values of Kayles games

K0 = {} = ∗0
K1 = {K0} = {∗0} = ∗1
K2 = {K0,K1} = {∗0, ∗1} = ∗2
K3 = {K1,K2,K1 & K1} = {∗1, ∗2, ∗0} = ∗3
K4 = {K2,K3,K1 & K2,K1 & K1} = {∗2, ∗3, ∗3, ∗0} = ∗1
K5 = {K3,K4,K2 & K2,K1 & K1,K1 & K3,K2 & K2}

= {∗3, ∗1, ∗2, ∗0, ∗2, ∗0} = ∗4
etc.

Starting from K72, the values settle into a repeating pattern with
period 12:

∗4, ∗1, ∗2, ∗8, ∗1, ∗4, ∗7, ∗2, ∗1, ∗8, ∗2, ∗7, . . .
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Extensions. . .

I misère play: the last player to move loses (e.g. misère Nim)

I partisan games — the two players have different options

I scoring — e.g. Go, Dots-and-Boxes

29/40



Partisan games (Berlekamp, Conway, and Guy, 1982)

What if we allow the two players to have different moves?

Let us call the two players Left and Right. A partisan game G
consists of a pair of sets of games, the left set and the right set.

We can turn every impartial game into a partisan game.
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Addition, negation

x + y = {xL + y , x + yL | xR + y , x + yR}.
(We can also multiply them...)

The negation of {L | R} is {−R | − L}; the negations are applied
recursively.
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Comparison

A game G can be positive, negative, zero, or fuzzy:

I G > 0 iff G is a win for Left.

I G < 0 iff G is a win for Right.

I G = 0 iff G is a loss for the player to move.

I G || 0 iff G is a win for the player to move.

To show G = H, we can show G − H is a loss for the player
to move.

To show G > H, we can show G − H is a win for Left.

etc.

Formally,
x ≥ y iff no xR ≤ y and x ≤ no yL
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Numbers (Conway, 1976)

The surreal numbers are those games

I formed from surreal numbers

I where no left option ≥ any right option.

For sets of numbers L and R, the number {L | R} is the
“simplest” number greater than L and less than R.

Neither player ever wants to move in a number unless it is the only
move left.
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The integers

Let Cn be a left-leaning chain with n links. Then Cn behaves like
the integer n. (Right-leaning is −n)

2 + 1 - 3 = 0
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Fractions

{0 | 1} = 1
2 :

x + x - 1 = 0
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I The integers

I The dyadic rationals: j
2k for integers j , k

0

−1 1

−2 −1
2

1
2 2

−3 −11
2 −3

4 −1
4

1
4

3
4 11

2 3

. . . . . . . . . . . .

I The other real numbers (by Dedekind cuts)

I Infinite ordinals: ω, ω + 1, ω
2 , 2ω, 3ω, ω2, ωω, . . .

I Infinitesimals: 1
ω , . . .
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Infinity plus one!

ω = {0, 1, 2, . . . | }.

We can show that {ω | } = ω + 1:

ω + 1 = {ωL + 1, ω + 1L | ωR + 1, ω + 1R}
= {0, 1, 2, . . . , ω | }
= {ω | }

(1 is preferable to 0, 2 to 1, etc. And ω is preferable to any integer)
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We have shown how games add. Games can also be split into
sums. . .

(see e.g. Spight pg. 8; Berlekamp and Kim pg. 2, 3, 5)
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Suggested reading

Claus Tøndering, Surreal Numbers — An Introduction:
http://www.tondering.dk/claus/surreal.html

Aaron Siegel, Misère Games and Misère Quotients:
http://arxiv.org/abs/math.CO/0612616

Games of No Chance, 1996:
http://www.msri.org/publications/books/Book29/contents.html

I Fraenkel, Scenic Trails Ascending from Sea-Level Nim to Alpine Chess

I West, Championship-Level Play of Domineering

I Elkies, On Numbers and Endgames: Combinatorial Game Theory in Chess
Endgames

I Berlekamp and Kim, Where Is the “Thousand-Dollar Ko”?

More Games of No Chance, 2002:
http://www.msri.org/publications/books/Book42/contents.html

I Elkies, Higher Nimbers in Pawn Endgames on Large Chessboards

I Spight, Go Thermography: The 4/21/98 Jiang–Rui Endgame

I Berlekamp and Scott, Forcing Your Opponent to Stay in Control of a Loony
Dots-and-Boxes Endgame

I Moore and Eppstein, One-Dimensional Peg Solitaire, and Duotaire
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General references

I John H. Conway, On Numbers and Games. 1976, 2nd ed 2000.

I Berlekamp, Conway, and Guy, Winning Ways for Your Mathematical
Plays. 1982, 2nd ed 2001-2004.

I Elwyn Berlekamp and David Wolfe, Mathematical Go: Chilling Gets
the Last Point. 1994.

I Combinatorial Game Suite (software): http://www.cgsuite.org/

The material on impartial games comes from Chapters 6 and 16 of

Conway; the material on partisan games comes mostly from Chapters 7

and 8 of the same.
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